Nonparametric Tests Against Trend
Author(s): Henry B. Mann
Source: Econometrica, Vol. 13, No. 3 (Jul., 1945), pp. 245-259
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/1907187
Accessed: 01/10/2013 09:36

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

NONPARAMETRIC TESTS AGAINST TREND ${ }^{1}$

By Henry B. Mann

1. INTRODUCTION

The function of a statistical test is usually to decide between two or more courses of action. A test consists in dividing the n-dimensional space into several regions W_{1}, \cdots, W_{m} (m may also be infinite). A sample of n measurements (X_{1}, \cdots, X_{n}) is then taken and if (X_{1}, \cdots, $\left.X_{n}\right)$ lies in W_{i} a certain action $A_{i}(i=1, \cdots, m)$ is taken. The action A_{i} is the appropriate action if a certain hypothesis H_{i} is true. In case of two regions we shall say that we test the hypothesis H_{1} against the hypothesis H_{2}.

It is the purpose of the present paper to discuss tests of randomness against trend. In terms of distribution functions the hypothesis H_{1} of randomness states that the sample (X_{1}, \cdots, X_{n}) is a random sample of n independent variables each with the same continuous distribution function. The hypothesis of a downward trend may be defined in the following way: The sample is still a random sample but X_{i} has the continuous cumulative distribution function f_{i} and $f_{i}(X)<f_{i+k}(X)$ for every i, every X, and every $k>0$. An upward trend is similarly defined with $f_{i}(X)>f_{i+k}(X)$.

In testing the hypothesis H_{1} of randomness against some class H_{2} of alternatives it is customary to fix $P\left[\left(X_{1}, \cdots, X_{n}\right) \subset W_{1} \mid H_{1}\right]$ where $P(E \mid H)$ denotes the probability of the event E if H is the true situation. The reason for fixing $P\left[\left(X_{1}, \cdots, X_{n}\right) \subset W_{1} \mid H_{1}\right]$ is that in this way we can fix the cost of testing, as long as H_{1} is the true situation. In quality control, for instance, this means that we fix the cost of controlling a production process that is under statistical control. $1-P\left[\left(X_{1}, \cdots, X_{n}\right) \subset W_{1} \mid H_{1}\right]$ is called the size of the critical region.

In proposing a test we usually define for every n a region $W_{1 n}$ in the n-dimensional space such that $P\left[\left(X_{1}, \cdots, X_{n}\right) \subset W_{1 n} \mid H_{1}\right]$ is a fixed constant. Such a test is called consistent with respect to the hypothesis H_{2} if, for every alternative B of $H_{2}, \lim _{n \rightarrow \infty} P\left[\left(X_{1}, \cdots, X_{n}\right)\right.$ $\left.C W_{1 n} \mid B\right]=0$.

A test of the hypothesis H_{1} against the hypothesis H_{2} is called unbiased if for any alternative B of H_{2} we have $P\left[\left(X_{1}, \cdots, X_{n}\right)\right.$ $\left.\subset W_{1 n} \mid B\right] \leqq P\left[\left(X_{1}, \cdots, X_{n}\right) \subset W_{1 n} \mid H_{1}\right)$. Unbiasedness is for all practical purposes a more important requirement than consistency. Suppose, for instance, that a test is biased and an alternative B is true for which $P\left[\left(X_{1}, \cdots, X_{n}\right) \subset W_{1 n} \mid B\right]>P\left[\left(X_{1}, \cdots, X_{n}\right) \subset W_{1 n} \mid H_{1}\right]$, then the action A_{2} is less likely to be taken under the situation B then under

[^0]Table 1*
Probability of Obtaining a Permutation with $T \leqq \bar{T}$ in Permutations of n Variables.

the situation H_{1} although it should not be taken if H_{1} is the true situation. In quality control, for instance, in testing against trend the action A_{2} may consist in inspecting machinery to find the causes of a trend. But if a biased test is used then there exist situations when a periodical inspection of machinery would be preferable in deciding the action to be taken. In other words, a biased test is in certain cases not only useless but even worse than no test at all.

In this paper we shall propose two tests against trend and find sufficient conditions for their consistency and unbiasedness. Both tests are based on ranks. The advantages and disadvantages of restricting oneself to tests based on ranks have been discussed in a paper by H. Scheffé. ${ }^{2}$ To the advantages of such tests one may add that they may also be used if the quantities considered cannot be measured, as long as it is possible to rank them. Intensity of sensory impressions, pleasure, and pain, are examples of such quantities. In this paper tests against downward trend will be discussed. A test against upward trend can then always be made by testing $-X_{1}, \cdots,-X_{n}$ against downward trend.

2. THE T-TEST

Let $X_{i_{1}}, \cdots, X_{i_{n}}$ be a permutation of the n distinct numbers X_{1}, \cdots, X_{n}. Let T count the number of inequalities $X_{i_{k}}<X_{i_{l}}$ where $k<l$. One such inequality will be called a reverse arrangement. If X_{1}, \cdots, X_{n} all have the same continuous distribution, then the probability of obtaining a sample with T reverse arrangements is proportional to the number of permutations of the variables $1,2, \cdots, n$ with T reverse arrangements.

The statistic T was first proposed by M. G. Kendall ${ }^{3}$ for testing independence in a bivariate distribution. Kendall also derived the recursion formula (1), tabulated the distribution of T for $T \leqq 10$, and proved that the limit distribution of T is normal. Table 1 , however, seems more convenient to use for our purpose. The proof of the normality of the limit distribution of T given in the present paper seems simpler than Kendall's and the method employed may be of general interest.

We now propose the following test against a downward trend: We determine \bar{T} so that $P\left(T \leqq \bar{T} \mid H_{1}\right)=\alpha$, where H_{1} is the hypothesis of randomness and α the size of the critical region. If in our sample we obtain a value $T \leqq \bar{T}$ we shall proceed as if the sample came from a

[^1]downward trend. If $T>\bar{T}$ we shall proceed as if H_{1} were true. It will be shown that under a mild additional restriction on the sequence $f_{1}, f_{2}, \cdots, f_{n}$ in the alternative H_{2} the T-test is a consistent test against trend.

3. THE DISTRIBUTION OF T

Let $P_{n}(T)$ be the number of permutations of $1,2, \cdots, n$ with T reverse arrangements. Consider first the permutations of $2,3, \cdots, n$. We can obtain each permutation of $1,2, \cdots, n$ exactly once by putting 1 into n different places of all permutations of $2,3, \cdots, n$. In doing this we increase the number of reverse arrangements by $0,1, \cdots, n-1$ according to the position into which 1 is placed. Hence

$$
\begin{equation*}
P_{n}(T)=P_{n-1}(T)+P_{n-1}(T-1)+\cdots+P_{n-1}(T-n+1) \tag{1}
\end{equation*}
$$

if $P_{n}(T)=0$ for $T<0$.
Formula (1) permits tabulation of $P_{n}(T)$ for small values of n. In Table 1 are given the cumulative probabilities of obtaining a permutation with T or fewer reverse arrangements, when every permutation occurs with probability $1 / n$!

Since, under the hypothesis of randomness, $P\left(X_{i}>X_{k}\right)=1 / 2$, we have $E(T)=n(n-1) / 4$.

To obtain higher moments of T we multiply (1) by [$T-n(n-1) / 4]^{i}$ $=X_{n}{ }^{i}$. Denoting by $E_{n}[f(X)]$ the expectation of $f\left(X_{n}\right)$ in permutations of n variables, we obtain

$$
\begin{align*}
E_{n}\left(X^{i}\right)= & \frac{1}{n}\left\{E_{n-1}\left[\left(X-\frac{n-1}{2}\right)^{i}\right]\right. \\
& +E_{n-1}\left[\left(X-\frac{n-3}{2}\right)^{i}\right]+\cdots \tag{2}\\
& \left.+E_{n-1}\left[\left(X+\frac{n-1}{2}\right)^{i}\right]\right\} .
\end{align*}
$$

Since the distribution of X is symmetric, $E_{n}\left(X^{2 i+1}\right)=0,(i=0,1, \cdots)$. From (2) we obtain

$$
\begin{equation*}
E_{n}\left(X^{2 i}\right)=E_{n-1}\left(X^{2 i}\right)+\binom{2 i}{2} B_{n}^{(2)} E_{n-1}\left(X^{2 i-2}\right)+\cdots+B_{n}^{(2 i)}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n}^{(2 i)}=\frac{1}{n} \sum_{k=0}^{k=n-1}\left(\frac{n-1}{2}-k\right)^{2 j} . \tag{4}
\end{equation*}
$$

We now put $n B_{n}{ }^{(2 j)}=f^{(2 j)}(n)$ and $f^{(2 i j}(1)=f^{(2 j)}(0)=0$; then $f^{(2 i)}(n)$ satisfies for $n=0,1, \cdots$, the difference equation

$$
\begin{equation*}
f^{(2 j)}(n+2)-f^{(2 j)}(n)=2\left(\frac{n+1}{2}\right)^{2 j} \tag{5}
\end{equation*}
$$

with the initial condition $f^{(2 i)}(1)=f^{(2 i)}(0)=0$. For $j=1$ a solution of (5) is $\left(n^{3}-n\right) / 12$. Hence we have $B_{n}{ }^{(2)}=\left(n^{2}-1\right) / 12$. For $j=2$ we obtain $B_{n}{ }^{(4)}=\left(3 n^{4}-10 n^{2}+7\right) / 240$. Hence for $i=1$, (3) becomes

$$
E_{n}\left(X^{2}\right)=E_{n-1}\left(X^{2}\right)+\frac{n^{2}-1}{12} .
$$

From this we obtain

$$
\begin{equation*}
E_{n}\left(X^{2}\right)=\sigma_{n}{ }^{2}(T)=\frac{2 n^{3}+3 n^{2}-5 n}{72} . \tag{6}
\end{equation*}
$$

In a similar manner we obtain

$$
\begin{equation*}
E_{n}\left(X^{4}\right)=\frac{100 n^{6}+228 n^{5}-455 n^{4}-870 n^{3}+625 n^{2}+372 n}{43,200} . \tag{7}
\end{equation*}
$$

Formula (6) can also be obtained in a different manner. Let, for $i<j$,

$$
y_{i j}=\left\{\begin{array}{lll}
1 & \text { if } & X_{i}<X_{i}, \tag{8}\\
0 & \text { if } & X_{i}>X_{j} .
\end{array}\right.
$$

Then if the continuous function f is the distribution function of X_{i} for $i=1,2, \cdots$, we have

$$
\begin{aligned}
E\left(y_{i j}\right) & =\frac{1}{2}, \quad \sigma^{2}\left(y_{i j}\right)=\frac{1}{4}, \\
E\left(y_{i j} y_{j k}\right) & =P\left(X_{i}<X_{j}<X_{k}\right)=\frac{1}{6}, \\
\sigma\left(y_{i j} y_{j k}\right) & =-\frac{1}{12} .
\end{aligned}
$$

Similarly we obtain $\sigma\left(y_{i,} y_{i k}\right)=\sigma\left(y_{i} y_{k j}\right)=1 / 12$, while $\sigma\left(y_{i}, y_{k l}\right)=0$ if i, j, k, l are distinct. For these results (5) can easily be obtained.

We proceed to prove that the limit distribution of T is normal. From (5) and the initial conditions of (5) it follows that $B_{n}{ }^{(2 i)}$ is given by a polynomial in n of degree $2 j$. To see this we first determine a polynomial $f^{(2 i)}(n)$ of degree $2 j+1$ satisfying (5) and the initial condition $f^{(2 i)}(0)=0$. It may then be shown by induction that $f^{(2 i)}(n)=-f^{(2 i)}(-n)$ for all even n. But this is only possible if $f^{(2 i)}(n)=-f^{(2 i)}(-n)$ for all n. From (5) it follows that $f^{(2 j)}(1)=f^{(2 j)}(-1)$. Hence we must also have $f^{2 i}(1)=0$. Thus there exists a polynomial of degree $2 j+1$ satisfying (5) and its initial conditions. We proceed to show by induction that $E_{n}\left(X^{2 i}\right)$ is given by a polynomial in n of degree $3 i$ and first coefficient $[(2 i-1)(2 i-3) \cdots 3 \cdot 1] / 36^{i}$.

From (3) we have

$$
\begin{align*}
E_{n}\left(X^{2 i}\right)-E_{n-1}\left(X^{2 i}\right)= & \binom{2 i}{2} \frac{\left(n^{2}-1\right)}{12} E_{n-1}\left(X^{2 i-2}\right) \tag{9}\\
& +\binom{2 i}{4} B_{n}^{(4)} E_{n-1}\left(X^{2 i-4}\right)+\cdots+B_{n}^{(2 i)}
\end{align*}
$$

From the hypothesis of the induction it follows that the j th term on the right-hand side of (9) is of degree $3 i-j$ in n. Hence only the first term is of degree $3 i-1$. Since the first difference of $E_{n}\left(X^{2 i}\right)$ is a polynomial of degree $3 i-1$ it follows that $E_{n}\left(x^{2 i}\right)$ is a polynomial of degree $3 i$. Hence we may put $E_{n}\left(X^{2 i}\right)=a_{0} n^{3 i}+\cdots$. Using again the hypothesis of our induction we obtain on comparing coefficients in (9)

$$
\begin{equation*}
3 i a_{0}=\frac{(2 i-3) \cdots 3 \cdot 1}{36^{i-1} 12} \frac{2 i(2 i-1)}{2}, \quad a_{0}=\frac{(2 i-1) \cdots 3 \cdot 1}{36^{i}} \tag{10}
\end{equation*}
$$

From (10) and (6) we have

$$
\lim _{n \rightarrow \infty} \frac{E_{n}\left(X^{2 i}\right)}{\sigma_{n}^{2 i}(X)}=(2 i-1) \cdots 3 \cdot 1
$$

It follows by a well-known theorem that $X / \sigma_{n}(X)$ is in the limit normally distributed with variance 1 . From Table 1 it may be seen that the approach to normality is remarkably rapid.

4. CONDITIONS FOR CONSISTENCY AND UNBIASEDNESS OF THE T-TEST

Let us assume now that some alternative situation (not necessarily a trend) is true. Let, for $i<k, P\left(X_{i}<X_{k}\right)=\frac{1}{2}+\epsilon_{i k}$. Let further $y_{i j}$ be defined by (8) and let $\sum_{i} \sum_{i<k} \epsilon_{i k}=\lambda_{n} n(n-1) / 2$. Then

$$
\begin{aligned}
T & =\sum_{i} \sum_{i<k} y_{i k} \\
E(T) & =\frac{n(n-1)}{4}+\sum_{i} \sum_{i<k} \epsilon_{i k}=\frac{n(n-1)}{4}\left(1+2 \lambda_{n}\right) .
\end{aligned}
$$

Moreover we shall assume that X_{i} is independent of X_{i} for $i \neq j$ so that $\sigma\left(y_{i j} y_{k l}\right)=0$ if i, j, k, l are distinct. We proceed to compute $\sigma^{2}(T)$ under the alternative hypothesis. To simplify the notation the symbol \sum without further specification will denote summation over all values for which the summands have been defined, We have

$$
\begin{align*}
\sigma^{2}(T)=E\left[(T-E(T))^{2}\right]= & \sum \sigma^{2}\left(y_{i k}\right)+2 \sum \sigma\left(y_{i j} y_{j k}\right) \tag{11}\\
& +\sum \sigma\left(y_{k j} y_{i j}\right)+\sum \sigma\left(y_{i k} y_{i l}\right) .
\end{align*}
$$

We have

$$
\begin{equation*}
\sigma^{2}\left(y_{i k}\right)=\frac{1}{4}-\epsilon_{i k}{ }^{2}, \quad \sigma\left(y_{i}, y_{j k}\right) \leqq 0 . \tag{12}
\end{equation*}
$$

The second of these two statements can be proved as follows: Let f_{1}, f_{2}, f_{3} be three continuous functions, then:

$$
\begin{aligned}
& {\left[\int_{-\infty}^{x_{1}} d f_{2}\left(X_{2}\right) \int_{-\infty}^{x_{2}} d f_{3}\left(X_{3}\right)\right] \int_{X_{1}}^{\infty} d f_{2}\left(X_{2}\right) } \\
& \leqq \int_{-\infty}^{x_{1}} d f_{2}\left(X_{2}\right) \int_{X_{1}}^{\infty} d f_{2}\left(X_{2}\right) \int_{-\infty}^{x_{1}} d f_{3}\left(X_{3}\right) \\
& \leqq \int_{-\infty}^{x_{1}} d f_{2}\left(X_{2}\right)\left[\int_{X_{1}}^{\infty} d f_{2}\left(X_{2}\right) \int_{-\infty}^{x_{2}} d f_{3}\left(X_{3}\right)\right] .
\end{aligned}
$$

Adding

$$
\int_{-\infty}^{x_{1}} d f_{2}\left(X_{2}\right)\left[\int_{-\infty}^{x_{1}} d f_{2}\left(X_{2}\right) \int_{-\infty}^{x_{2}} d f_{3}\left(X_{3}\right)\right]
$$

to both sides of this inequality we obtain

$$
\int_{-\infty}^{x_{1}} d f_{2}\left(X_{2}\right) \int_{-\infty}^{x_{2}} d f_{3}\left(X_{3}\right) \leqq \int_{-\infty}^{x_{1}} d f_{2}\left(X_{2}\right) \int_{-\infty}^{+\infty} d f_{2}\left(X_{2}\right) \int_{-\infty}^{x_{2}} d f_{3}\left(X_{3}\right) .
$$

Integrating both sides with respect to X_{1} we obtain

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} d f_{1}\left(X_{1}\right) \int_{-\infty}^{x_{1}} d f_{2}\left(X_{2}\right) \int_{-\infty}^{X_{2}} d f_{3}\left(X_{3}\right) \\
& \\
& \leqq\left[\int_{-\infty}^{+\infty} d f_{1}\left(X_{1}\right) \int_{-\infty}^{x_{1}} d f_{2}\left(X_{2}\right)\right]\left[\int_{-\infty}^{+\infty} d f_{2}\left(X_{2}\right) \int_{-\infty}^{x_{2}} d f_{3}\left(X_{3}\right)\right]
\end{aligned}
$$

or $P\left(X_{1}>X_{2}>X_{3}\right) \leqq P\left(X_{1}>X_{2}\right) P\left(X_{2}>X_{3}\right)$. From this result the inequality in (12) follows easily.

We further have

$$
\begin{aligned}
\sigma\left(y_{i k} y_{i l}\right) & =P\left(y_{i k}=y_{i l}=1\right)-E\left(y_{i k}\right) E\left(y_{i l}\right) \\
& =P\left(y_{i k}=y_{i l}=1\right)-\left(\frac{1}{2}+\epsilon_{i k}\right)\left(\frac{1}{2}+\epsilon_{i l}\right), \\
P\left(y_{i k}=y_{i l}=1\right) & =\int_{-\infty}^{+\infty}\left(1-f_{k}\right)\left(1-f_{i}\right) d f_{i} \leqq \frac{1}{2}+\min \left(\epsilon_{i k}, \epsilon_{i l}\right) .
\end{aligned}
$$

Hence
(13) $\sigma\left(y_{i k} y_{i l}\right) \leqq \frac{1}{2}+\min \left(\epsilon_{i k}, \epsilon_{i l}\right)-\left(\frac{1}{2}+\epsilon_{i k}\right)\left(\frac{1}{2}+\epsilon_{i l}\right) \leqq \frac{3}{2}-\epsilon_{i k} \epsilon_{i l}$. Similarly

$$
\begin{equation*}
\sigma\left(y_{k j} y_{l_{j}}\right) \leqq \frac{1}{2}-\epsilon_{k j} \epsilon_{i j} . \tag{14}
\end{equation*}
$$

From (11), (12), (13), and (14) we obtain

$$
\begin{aligned}
\sigma^{2}(T) \leqq & \frac{n(n-1)}{4}+\frac{n(n-1)(n-2)}{6} \\
& -\sum_{i=1}^{n}\left[\sum_{k} \epsilon_{i k}{ }^{2}+\sum_{k \neq j} \epsilon_{i k} \epsilon_{i,}+\sum_{k \neq j} \epsilon_{i \in} \epsilon_{j i}\right] .
\end{aligned}
$$

We put $\sum_{k=i+1}^{t-n} \epsilon_{i k}=L_{i}, \sum_{i=1}^{i=k-1} \epsilon_{i k}=L_{. k} ;$ then

$$
\begin{aligned}
\sum_{i}\left(\sum_{k} \epsilon_{i k^{2}}+\sum_{k \neq j} \epsilon_{i k} \epsilon_{i j}+\right. & \left.\sum_{k \neq j} \epsilon_{k i} \epsilon_{j i}\right) \\
& =\sum_{i} L_{i \cdot}{ }^{2}+\sum_{j} L_{. \gamma^{2}}-\sum_{i} \sum_{j} \epsilon_{i j}{ }^{2} .
\end{aligned}
$$

Since $\epsilon_{i j}{ }^{2} \leqq \frac{1}{4}$ we obtain

$$
\begin{equation*}
\sigma^{2}(T) \leqq \frac{3 n(n-1)}{8}+\frac{n(n-1)(n-2)}{6} . \tag{15}
\end{equation*}
$$

If all $\epsilon_{i j}$ have the same sign then $L_{i} \cdot{ }^{2} \geqq \sum_{j} \epsilon_{i j}{ }^{2}$ and $\sum_{i} L \cdot{ }_{j}{ }^{2}$ $\geqq \lambda_{n}{ }^{2} n^{2}(n-1) / 4$. We can then improve (15) to the form

$$
\begin{equation*}
\sigma^{2}(T) \leqq \frac{n(n-1)}{4}+\frac{n(n-1)(n-2)}{6}-\lambda_{n}{ }^{2} \frac{n^{2}(n-1)}{4} . \tag{15'}
\end{equation*}
$$

If the critical region is given by $T \leqq \bar{T}$ then the power of the T test with respect to the hypothesis H is given by $P(T \leqq \bar{T} \mid H)$.

If the size of the critical region is fixed then $\bar{T}=n(n-1) / 4$ $-t_{n} \sqrt{\left(2 n^{3}+3 n^{2}-5 n\right) / 72}$, where $\lim _{n \rightarrow \infty} t_{n}=t$ and $\int_{-\infty}^{-t} e^{-x^{2} / 2} d x$ equals the size of the critical region.

Consider now the case that $\lambda_{n}<0$ and $n(n-1)\left(1+2 \lambda_{n}\right) / 4<\bar{T}+1$ then by Tchebycheff's theorem we have

$$
\begin{equation*}
P(T \leqq \bar{T} \mid H) \geqq 1-\frac{\sigma^{2}(T)}{\left[\bar{T}+1-\frac{n(n-1)}{4}\left(1+2 \lambda_{n}\right)^{2}\right]} . \tag{16}
\end{equation*}
$$

We may also use

$$
P(T \leqq \bar{T} \mid H)
$$

$$
\begin{equation*}
\geqq 1-\frac{\sigma^{2}(T)}{\left(\lambda_{n} \frac{n(n-1)}{2}+t_{n} \sqrt{\left.\frac{2 n^{3}+3 n^{2}-5 n}{72}\right)^{2}}\right.} \tag{16'}
\end{equation*}
$$

for

$$
\lambda_{n} \frac{n(n-1)}{2} \leqq-t_{n} \sqrt{\frac{2 n^{3}+3 n^{2}-5 n}{72}}
$$

For large values of n we may replace t_{n} by t. From (15), (16'), and the fact that $\lim _{n \rightarrow \infty} t_{n}=t$, it can be seen that the T-test is consistent whenever $\lim _{n \rightarrow \infty} \sqrt{n} \lambda_{n}=-\infty$.

In case the alternative H is a downward trend, we have $f_{i}(X)$ $<f_{j}(X)$ if $i<j$ and

$$
P\left(X_{i}<X_{j}\right)=\int\left(1-f_{i}\right) d f_{i}<\int\left(1-f_{i}\right) d f_{i}=\frac{1}{2}
$$

hence $\epsilon_{i j}$ is always negative and (15') may be used as an upper bound of $\sigma^{2}(T)$ in (16) or (16 $)$.

Another estimate of $P(T \leqq \bar{T})$, which for small values of n gives better results than (16), can be obtained as follows:

If X is always positive and $E(X)=A$, then

$$
\begin{aligned}
P(X>B) & =\int_{B+\epsilon}^{\infty} d f(X) \leqq \frac{1}{B^{\prime}} \int_{B+\epsilon}^{\infty} X d f(X) \leqq \frac{A}{B^{\prime}} \\
\int_{B+\epsilon}^{\infty} d g & =\lim _{\epsilon \rightarrow \infty} \int_{B+\epsilon}^{\infty} d g, \quad \epsilon>0
\end{aligned}
$$

where B^{\prime} is the lower bound of all values $B^{\prime \prime}$ for which $\int_{B+\epsilon}^{B^{\prime \prime}} d f(X)>0$. Thus

$$
P(X \leqq B) \geqq 1-\frac{A}{B^{\prime}}=\frac{B^{\prime}-A}{B^{\prime}}
$$

Hence

$$
\begin{equation*}
P(T \leqq \bar{T} \mid H) \geqq \frac{\bar{T}+1-\frac{n(n-1)}{4}\left(1+2 \lambda_{n}\right)}{\bar{T}+1} \tag{17}
\end{equation*}
$$

We may also use

$$
P(T \leqq \bar{T}) \geqq \frac{-2 \lambda_{n} n(n-1)-4 t_{n} \sigma_{0}}{n(n-1)-4 t_{n} \sigma_{0}}
$$

where $\sigma_{0}=\sqrt{\left(2 n^{3}+3 n^{2}-5 n\right) / 72}$, and may for large n replace t_{n} by t. Thus, for instance, for $n=20, \lambda_{n}=0.25, t_{20}=1.64,\left(17^{\prime}\right)$ yields $P(T \leqq \bar{T})$ $\geqq 0.326$. A much better result is obtained from (16^{\prime}) if the distribution of T under the alternative H is approximately normal as is probably the case under a wide class of alternatives.

If the size of the critical region, that is to say, $1-P\left[\left(X_{1}, \cdots, X_{n}\right)\right.$ $\left.\subset W_{1} \mid H_{1}\right]=\alpha$, then the test is unbiased with respect to H_{2} if $P(T \leqq \bar{T} \mid B) \geqq \alpha$ for every B in H_{2}. This is, according to (17), the case if

$$
\frac{\bar{T}+1-\left(\frac{n(n-1)}{4}+\lambda_{n} \frac{n(n-1)}{2}\right)}{\bar{T}+1} \geqq \alpha
$$

or

$$
\begin{equation*}
-\lambda_{n} \geqq \frac{1}{2}-\frac{(1-\alpha) 2(\bar{T}+1)}{n(n-1)} . \tag{18}
\end{equation*}
$$

For instance, if $n=5, \alpha=5 / 120$, then $\bar{T}+1=2$, and we obtain from (18), $-\lambda_{n} \geqq 0.31$. If n is large enough to use the normal approximation for determining the size of the critical region we obtain with $\sigma_{0}=\sqrt{\left(2 n^{3}+3 n^{2}-5 n\right) / 72}$

$$
-\lambda_{n} \geqq \frac{\alpha}{2}+\frac{(1-\alpha) t 2 \sigma_{0}}{n(n-1)} .
$$

Thus, for example, if $n=10, \alpha=0.05$, then $t=1.64$, and we find from (18^{\prime}) that the T-test is certainly unbiased if $-\lambda_{n} \geqq 0.218$ [the value obtained from (18) is 0.205]. For $n=20, \alpha=0.05, t=1.64$, we obtain from (18^{\prime}), $-\lambda_{20} \geqq 0.154$, which seems satisfactory.

Summary of Section 4: The T-test is consistent with respect to any sequence of random variables X_{1}, \cdots, X_{n} for which

1. $P\left(X_{i}>X_{i}\right)=\frac{1}{2}+\epsilon_{i j}$, for $i<j$;
2. $P\left(X_{i}>X_{j} \mid X_{k}>X_{l}\right)=P\left(X_{i}>X_{i}\right)$, if i, j, k, l are distinct;
3. $\lim _{n \rightarrow \infty}\left(\sqrt{n} \sum \epsilon_{i j} / n^{2}\right)=-\infty$.

The T-test is unbiased with respect to any set of random variables X_{1}, \cdots, X_{n}, if $\lambda_{n}=2 \sum \epsilon_{i j} / n(n-1)$ satisfies the inequality (18), which for large n may be replaced by (18^{\prime}). Lower bounds for the power of the T-test are given by (16), (16') and (17), (17') where the primed inequalities are convenient for larger values of n.

5. ALTERNATIVES WITH RESPECT TO WHICH THE T-TEST IS MOST POWERFUL

Let $z_{k}=i$ if exactly $i-1$ of the X 's are larger than X_{k}. Let $T\left(i_{1}, \cdots, i_{n}\right)$ be the number of nonreverse arrangements in the permutation $i_{1}, \cdots, i_{n} . T\left(i_{1}, \cdots, i_{n}\right)$ is equal to the number of reverse arrangements in the sequence of the X 's. Further let us restrict ourselves to tests based on ranks.

Whenever an alternative B is such that $T\left(i_{1}, \cdots, i_{n}\right) \geqq T\left(j_{1}, \cdots, j_{n}\right)$ implies $P\left(z_{1}=i_{1}, \cdots, z_{n}=i_{n}\right) \leqq P\left(z_{1}=j_{1}, \cdots, z_{n}=j_{n}\right)$, then the T-test
will be most powerful with respect to the alternative B among all tests based on ranks.

We shall as a special case consider a particular alternative B, defined as follows: The probability that, among the set $X_{i}, X_{i+1}, \cdots, X_{n}$, X_{i} will be the first, second, \cdots in magnitude, is, if B is true, given by $a_{i}, a_{i} p, \cdots, a_{i} p^{n-i-1}(p<1), a_{i}=1 /\left(1+p+\cdots+p^{n-i-1}\right)$ independently of the ranks of the first $i-1$ variables.

Thus, if B is true,

$$
P\left(z_{i}=k \mid z_{1}=j_{1}, \cdots, z_{i-1}=j_{i-1}\right)= \begin{cases}0 & \text { if one } j_{\alpha}=k \\ a_{i} p^{k-l_{i}-1} & \text { otherwise }\end{cases}
$$

where l_{i} is the number of j_{α} 's which are $<k$.
Then

$$
\begin{gather*}
P\left(z_{1}=i_{1}, z_{2}=i_{2}, \cdots, z_{n}=i_{n}\right)=a_{1} p^{i_{1}-1} a_{2} p^{i_{2}-l_{2}-1} \cdots a_{n} p_{n}^{i_{n}-l_{n}-1} \\
=\left(\prod_{i=1}^{i=n} a_{i}\right) p^{n(n-1) / 2} p^{-\Sigma l_{i}}=\left(\prod_{i=1}^{i=n} a_{i}\right) p^{T\left(i_{1}, \ldots, i_{n}\right)} . \tag{19}
\end{gather*}
$$

Hence $P\left(z_{1}=i_{1}, \cdots, \quad z_{n}=i_{n}\right)<P\left(z_{1}=j_{1}, \cdots, \quad z_{n}=j_{n}\right)$ whenever $T\left(i_{1}, \cdots, i_{n}\right)>T\left(j_{1}, \cdots, j_{n}\right)$. Thus the T-test has maximum power with respect to the alternative B. It is, however, not known whether B can result if the X 's are independently distributed.
As a side result we obtain from (19) the characteristic function of T. We have

$$
\begin{aligned}
\prod_{i=1}^{i=n} a_{i} & =\left[1(1+p) \cdots\left(1+p+\cdots+p^{n-1}\right)\right]^{-1} \\
& =\frac{(p-1)^{n}}{(p-1)\left(p^{2}-1\right) \cdots\left(p^{n}-1\right)}
\end{aligned}
$$

Summing (19) over all permutations, we obtain

$$
\frac{1}{n!} \sum P_{n}(T) p^{r}=\frac{\left(p^{n}-1\right)\left(p^{n-1}-1\right) \cdots(p-1)}{(p-1)^{n}} .
$$

This is an identity in p. Hence $f_{T}(\theta)$, the characteristic function of T, is given by

$$
f_{T}(\theta)=\sum \frac{1}{n!} P_{n}(T) e^{i T \theta}=\frac{\left(e^{i n \theta}-1\right) \cdots\left(e^{i \theta}-1\right)}{\left(e^{i \theta}-1\right)^{n}} .
$$

6. THE K-TEST

If $P\left(X_{i}>X_{i}\right)$ increases rapidly with $j-i$, then another test is more powerful than the T-test. This test is carried out as follows:

Determine for the sample $X_{0}, X_{1}, \cdots, X_{n-1}$ the smallest value of K for which the following set of inequalities is fulfilled:

$$
\begin{align*}
& X_{0}>X_{k}, X_{0}>X_{k+1}, \cdots, X_{0}>X_{n-1}, \\
& X_{1}>X_{k+1}, \cdots, X_{1}>X_{n-1}, \tag{20}\\
& \cdots \cdots \cdots \cdots \cdots \cdots \\
& X_{n-k-1}>X_{n-1} .
\end{align*}
$$

Determine \bar{K} so that $P\left(K \leqq \bar{K} \mid H_{1}\right)$ is equal to the size of the critical region. If $K \leqq \bar{K}$, proceed as if H_{2} were true; if $K>\bar{K}$, proceed as if H_{1} were true.

Let $X_{0}, X_{1}, \cdots, X_{n-1}$ be the sample in the order taken. Consider the $n!$ points $\left(Y_{0}, Y_{1}, \cdots, Y_{n-1}\right)$ where $Y_{0}=X_{i_{0}}, \cdots, Y_{n-1}=X_{i_{n-1}}$ for every permutation i_{0}, \cdots, i_{n-1} of the numbers $0,1, \cdots, n-1$. Let $Q_{n}(\bar{K})$ be the number of points $\left(Y_{0}, \cdots, Y_{n-1}\right)$ that satisfy the \bar{K} th set of inequalities. We arrange every point in order of decreasing magnitude so that to every point $Y_{0}, Y_{1}, \cdots, Y_{n-1}$ we have a sequence of inequalities $Y_{i_{0}}>\cdots>Y_{i_{n-1}}$. Thus every point is mapped into a permutation i_{0}, \cdots, i_{n-1}. In order that the point with the permutation i_{0}, \cdots, i_{n-1} fulfill the \bar{K} th set of inequalities, it is necessary and sufficient that in the permutation $i_{0}, i_{1}, \cdots, i_{n-1}$ no number α be preceded by any of the numbers $\alpha+\bar{K}, \alpha+\bar{K}+1, \cdots, n-1$. Hence the number of points fulfiling the \bar{K} th set of inequalities is equal to the number of permutations in which no number α is preceded by any of the numbers $\alpha+\bar{K}, \alpha+\bar{K}+1, \cdots, n-1$.

We have $Q_{n}(1)=1$. A permutation in which no α is preceded by any number larger than $\alpha+1$ can have the number 0 only at the first or the second place. Hence such a permutation must either be of the type $0, i_{1}, \cdots, i_{n-1}$, or of the type $1,0, i_{2}, \cdots, i_{n-1}$; and i_{1}, \cdots, i_{n-1}; i_{2}, \cdots, i_{n-1} respectively must fulfill the \bar{K} th set of inequalities with $\bar{K}=\mathbf{2}$. Hence we have the recursion

$$
\begin{equation*}
Q_{n}(2)=Q_{n-1}(2)+Q_{n-2}(2) . \tag{21}
\end{equation*}
$$

In using this relation we must put $Q_{n}(\bar{K})=0$ for $n<0, Q_{n}(n+j)=n$! for $j \geqq 0, n \geqq 0$. To obtain a similar recursion for $\bar{K}=3$ we observe that a permutation in which α is never preceded by any number larger than $\alpha+2$ can be only of one of the following types:

$$
\begin{aligned}
& 0, i_{1}, \cdots, i_{n-1} ; 1,0, i_{2}, \cdots, i_{n-1} ; 2,0,1, i_{3}, \cdots, i_{n-1} ; \\
& \quad 2,0,3,1, i_{4}, \cdots, i_{n-1} ; 1,2,0, i_{3}, \cdots, i_{n-1} ; 2,1,0, i_{3}, \cdots, i_{n-1} .
\end{aligned}
$$

Hence we have the recursion

$$
\begin{equation*}
Q_{n}(3)=Q_{n-1}(3)+Q_{n-2}(3)+3 Q_{n-3}(3)+Q_{n-4}(3) . \tag{22}
\end{equation*}
$$

Let $P_{n}(\bar{K})$ be the probability of obtaining a permutation satisfying the \bar{K} th set of inequalities. For $n \leqq 2 \bar{K}$ some of the variables are not involved in the inequalities (20). We therefore have ${ }^{4}$

$$
\begin{equation*}
P_{n}(n-\bar{K})=P_{2 K}(\bar{K}) \quad \text { for } \quad n \geqq 2 \bar{K} \tag{23}
\end{equation*}
$$

We shall show below that $P_{8}(4)=0.0284, P_{9}(4)=0.0086, P_{10}(5)$ $=0.0098$. These values and the relations (21), (22), and (23) permit tabulation of $P_{n}(\bar{K})$ for $n \leqq 9$. From (23) and Table 2 we further obtain:

$$
\begin{align*}
& P_{n}(n-5)=P_{10}(5)=0.0098 \cdots \text { for } n \geqq 10 ; \\
& P_{n}(n-4)=P_{8}(4)=0.0284 \cdots \text { for } n \geqq 8 ; \\
& P_{n}(n-3)=P_{6}(3)=0.0792 \cdots \text { for } n \geqq 6 ; \tag{24}\\
& P_{n}(n-2)=0.2083 \cdots \text { for } n \geqq 4 ; \\
& P_{n}(n-1)=0.5 \text { for } n \geqq 2 .
\end{align*}
$$

It is clear that (24) contains for $n \geqq 10$ all critical regions possible for the K-test between size 0.0098 and 0.5 . Regions smaller than 0.0098 are not likely to occur in practical problems. Hence within a range which is of interest to the practical statistician we shall have all regions available for the K-test if we compute $P_{8}(4), P_{9}(4)$, and $P_{10}(5)$. It is a disadvantage of the K-test that we are rather limited in the choice of the size of the critical region.

We shall derive the following two relations: Let $R_{n}(\bar{K})$ be the subset of the n-dimensional Euclidean space given by (20) and let f be the common cumulative distribution function of the X_{i}; then for $n \geqq 2 \bar{K}$, as we shall prove below,

$$
\begin{align*}
& P_{n}(n-\bar{K})=P_{2 K}(\bar{K})=\int_{R_{2 K}(K)} d f\left(X_{0}\right) \cdots d f\left(X_{2 K-1}\right) \tag{25}\\
= & \sum\left\{\left(j_{1}+1\right)\left[\max \left(j_{1}, j_{2}\right)+2\right] \cdots\left[\max \left(j_{1}, \cdots, j_{K}\right)+\bar{K}\right]\right\}^{-1}
\end{align*}
$$

where \sum denotes summation over all permutations j_{1}, \cdots, j_{K} of $1, \cdots, \bar{K}$. Further let $\overline{\max }\left(i_{1}, \cdots, i_{l}\right)=\min \left[\max \left(i_{1}, \cdots, i_{l}\right), \bar{K}-1\right]$; then

$$
\begin{align*}
P_{9}(4)= & \int_{R_{9}^{(4)}} d f\left(X_{0}\right), \cdots, d f\left(X_{8}\right) \tag{26}\\
= & \sum^{\prime}\left\{\left[\max \left(j_{1}\right)+1\right]\left[\max \left(j_{1}, j_{2}\right)+2\right]\right. \\
& \left.\cdots\left[\max \left(j_{1}, \cdots, j_{5}\right)+5\right]\right\}^{-1}
\end{align*}
$$

[^2]where \sum^{\prime} denotes summation over all permutations j_{1}, \cdots, j_{5} of $1, \cdots, 5$ for which 1 precedes 5 .

Since the integral in (25) is independent of f, we may assume that f is a rectangular distribution between 0 and 1 . We consider the integral. in (25). For $X_{0}, X_{1}, \cdots, X_{K-1}$ fixed, X_{K} varies from 0 to $X_{0} ; X_{K+1}$ from 0 to $\min \left(X_{0}, X_{1}\right.$); X_{K+2} from 0 to $\min \left(X_{0}, X_{1}, X_{2}\right)$; and so forth; hence we obtain

$$
\begin{aligned}
P_{2 K}(\bar{K})=\int_{0}^{1} \cdots \int_{0}^{1} & X_{0} \min \left(X_{0}, X_{1}\right) \\
& \cdots \min \left(X_{0}, X_{1}, \cdots, X_{K-1}\right) d X_{0} \cdots d X_{K-1}
\end{aligned}
$$

We split this integral into the \bar{K} ! parts $X_{i_{1}}<X_{i_{2}}<\cdots<X_{i K}$; then for any permutation i_{1}, \cdots, i_{K} of $0, \cdots, \bar{K}-1$ we have to compute

$$
\begin{align*}
& \int_{0}^{1} d X_{i_{K}} \int_{0}^{x_{i_{K}}} d X_{i_{K-1}} \cdots \int_{0}^{X_{i 2}} d X_{i 1} X_{0} \min \left(X_{0}, X_{1}\right) \tag{27}\\
& \cdots \min \left(X_{0}, \cdots, X_{K-1}\right) .
\end{align*}
$$

Consider the exponent of $X_{i \alpha}$ in (27). In the factors under the integral $\operatorname{sign} X_{i \alpha}$ occurs for the first time in $\min \left(X_{0}, X_{1}, \cdots, X_{i \alpha}\right)$. From then on it occurs in every factor. If $i_{\beta}<i_{\alpha}$ for $\beta<\alpha$, then none of the factors in (27) will be equal to $X_{i \alpha}$. If $\min \left(i_{1}, \cdots, i_{\alpha-1}\right)=i_{\beta}>i_{\alpha}(\alpha>1)$, then the factors $\min \left(X_{0}, \cdots, X_{i \alpha}\right), \min \left(X_{0}, \cdots, X_{i \alpha+1}\right), \cdots, \min \left(X_{0}, \cdots\right.$, $X_{i_{\beta}-1}$) will be equal to $X_{i \alpha}$. In both cases the exponent of $X_{i \alpha}$ may be written as $\min \left(i_{1}, \cdots, i_{\alpha-1}\right)-\min \left(i_{1}, \cdots, i_{\alpha}\right)$. For $\alpha=1$, we shall have $\min \left(X_{0}, \cdots, X_{i_{1}}\right) \cdots \min \left(X_{0}, \cdots, X_{K-1}\right)$ equal to $X_{i_{1}}$. Hence (27) becomes

$$
\begin{align*}
\int_{0}^{1} d X_{i_{K}} & X_{i_{K}}^{\min \left(i_{1}, \cdots, i_{K-1}\right)-\min \left(i_{1}, \cdots, i_{K}\right)} \\
& \cdot \int_{0}^{X i_{K}} \cdots \int_{0}^{X i_{3}} d X_{i_{2}} X_{i_{2}}^{i_{1}-\min \left(i_{1}, i_{2}\right)} \int_{0}^{x_{i}} d X_{i_{1}} X_{i_{1}}^{K-i_{1}} . \tag{28}
\end{align*}
$$

Integrating out the last integral we obtain under the next to the last integral sign

$$
\frac{1}{\bar{K}-i_{1}+1} X_{i_{2}}^{K-i_{1}+1} X_{i_{2}}^{i_{1}-\min \left(i_{1}, i_{2}\right)}=\left(\bar{K}-i_{1}+1\right)^{-1} X_{i_{2}}^{K-\min \left(i_{1}, i_{2}\right)+1} .
$$

When this process is continued (28) finally becomes

$$
\begin{align*}
& \left(\bar{K}-i_{1}+1\right)^{-1}\left[\bar{K}-\min \left(i_{1}, i_{2}\right)+2\right]^{-1} \tag{29}\\
& \cdots\left[\bar{K}-\min \left(i_{1}, \cdots, i_{K}\right)+\bar{K}\right]^{-1}
\end{align*}
$$

Putting $\bar{K}-i_{\alpha}=j_{\alpha}$ and summing over all permutations i_{1}, \cdots, i_{K}, we obtain (25).

In the integral in (26) we have X_{5} varying from 0 to $\min \left(X_{0}, X_{1}\right) ; X_{6}$ from 0 to $\min \left(X_{0}, X_{1}, X_{2}\right)$; and so forth, hence

$$
\begin{align*}
P_{9}(4)=\int_{0}^{1} \cdots \int_{0}^{1} \int_{0}^{X_{0}} & \min \left(X_{0}, X_{1}\right) \tag{30}\\
& \cdots \min \left(X_{0}, X_{1}, \cdots, X_{4}\right) d X_{4} \cdots d X_{0} .
\end{align*}
$$

Now for every subset $X_{i_{1}}<\cdots<X_{i_{6}}$ where i_{1}, \cdots, i_{5} is a permutation of the numbers $0,1,2,3,4$, we obtain

$$
\begin{array}{r}
\int_{0}^{1} \int_{0}^{x_{i_{1}}} \cdots \int_{0}^{x_{i_{3}}} \min \left(X_{0}, X_{1}\right) \cdots \min \left(X_{0}, \cdots, X_{4}\right) d X_{i_{1}} \cdots d X_{i_{5}} \\
=\int_{0}^{1} \int_{0}^{x_{i_{4}}} \cdots \int_{0}^{x_{i_{1}}} X_{i_{1}}^{b-\max \left(i_{1}, 1\right)} \dot{X}_{i_{2}} \max \left(i_{1}, 1\right)-\max \left[\min \left(i_{1}, i_{2}\right), 1\right] \\
\cdots X_{i_{5}} \max ^{\left.\min \left(i_{1}, i_{2}, i_{3}, i_{4}\right), 1\right]-\max \left[\min \left(i_{1}, i_{2}, i_{2}, i_{4}, i_{5}\right), 1\right]} \\
d X_{i_{1}} \cdots d X_{i_{5}},
\end{array}
$$

from which (26) follows by an obvious extension of the argument used in the proof of (25).
By the use of (25) and (26) the values $P_{8}(4), P_{10}(5)$, and $P_{9}(4)$ have been computed. It may be remarked that the labor involved was not at all excessive since in carrying out the computations a great many short cuts offer themselves freely.

It is easy to construct trends for which the K-test has maximum power at some fixed level of significance, Let the critical value of K be \bar{K} and consider alternatives where $P\left(X_{i}>X_{K+i+j}\right)=1$ for $j \geqq 0$. It is easy to find trends for which this is true. The K-test has then clearly the power 1 with respect to such trends. The power of the K-test is also high with respect to trends for which $P\left(X_{1}>X_{i+K+j}\right)$ is close to 1 for $j \geqq 0$. Such alternatives do quite frequently occur in practical work. The fact that the K-test is most powerful with respect to a fairly wide class of alternatives seems worth noting. It is very often said that in using a test based on ranks, one is "throwing away information." In using the K-test an even larger "amount of information" is "thrown away," nevertheless it is a most powerful test with respect to a substantial class of alternatives.

The Ohio State University

[^0]: ${ }^{1}$ Research under a grant of the Research Foundation of Ohio State University.

[^1]: \rightarrow Henry Scheffe, "On a Measure Problem Arising in the Theory of NonParametric Tests," Annals of Mathematical Statistics, Vol. 14, September, 1943, pp. 227-233.
 \rightarrow M. G. Kendall, "A New Measure of Rank Correlation," Biometrika, Vol. 30, June, 1938, pp. 81-93.

[^2]: ${ }^{4}$ For typographical reasons it was not possible to use \bar{K} in subscripts and exponents. Every K in subscripts and exponents in this section should be read as \bar{K}.

