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NONPARAMETRIC TESTS AGAINST TREND1 

By HENRY B. MANN 

1. INTRODUCTION 

The function of a statistical test is usually to decide between two 
or more courses of action. A test consists in dividing the n-dimensional 
space into several regions W1, , Wm (m may also be infinite). A 
sample of n measurements (X1, , X,") is then taken and if (X1, 
Xn) lies in Wi a certain action Ai (i =1, , m) is taken. The action 
A i is the appropriate action if a certain hypothesis Hi is true. In case of 
two regions we shall say that we test the hypothesis H1 against the 
hypothesis H2. 

It is the purpose of the present paper to discuss tests of randomness 
against trend. In terms of distribution functions the hypothesis H1 of 
randomness states that the sample (X1, , Xn) is a random sample 
of n independent variables each with the same continuous distribution 
function. The hypothesis of a downward trend may be defined in the 
following way: The sample is still a random sample but Xi has the con- 
tinuous cumulative distribution function ft and fi(X) <fi+k(X) for 
every i, every X, and every k >0. An upward trend is similarly defined 
with fi(X) >fi+(X). 

In testing the hypothesis H1 of randomness against some class H2 
of alternatives it is customary to fix P [(X1, , * XXn) CWII H1] where 
P(E I H) denotes the probability of the event E if H is the true situa- 
tion. The reason for fixing P [(X1, - - , X,) CW11 H1] is that in this 
way we can fix the cost of testing, as long as H1 is the true situation. In 
quality control, for instance, this means that we fix the cost of con- 
trolling a production process that is under statistical control. 
1-P [(X1, * , Xn) C W1I H1] is called the size of the critical region. 

In proposing a test we usually define for every n a region W1n in 
the n-dimensional space such that P [(X1, . . . , Xn) C W1n I H1] is a 
fixed constant. Such a test is called consistent with respect to the hy- 
pothesis H2 if, for every alternative B of H2, lim,,.P [(X1, * * * , Xn) 

CWln'I B] =0. 
A test of the hypothesis H1 against the hypothesis H2 is called un- 

biased if for any alternative B of H2 we have P [(X1, . .. , X") 

CW11 B ] < P [(Xl, ... I X,) C Win I H1). Unbiasedness is for all prac- 
tical purposes a more important requirement than consistency. Sup- 
pose, for instance, that a test is biased and an alternative B is true for 
which P [(X1, . .. , X n)CW1nB]>P[(X1 ... , Xn) C W1n I Hi ], then 
the action A2 is less likely to be taken under the situation B then under 
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NONPARAMETRIC TESTS AGAINST TREND 247 

the situation H1 although it should not be taken if H1 is the true situa- 
tion. In quality control, for instance, in testing against trend the action 
A2 may consist in inspecting machinery to find the causes of a trend. 
But if a biased test is used then there exist situations when a periodical 
inspection of machinery would be preferable in deciding the action to 
be taken. In other words, a biased test is in certain cases not only use- 
less but even worse than no test at all. 

In this paper we shall propose two tests against trend and find suffi- 
cient conditions for their consistency and unbiasedness. Both tests are 
based on ranks. The advantages and disadvantages of restricting one- 
self to tests based on ranks have been discussed in a paper by 
H. Schef6.2 To the advantages of such tests one may add that they may 
also be used if the quantities considered cannot be measured, as long 
as it is possible to rank them. Intensity of sensory impressions, pleasure, 
and pain, are examples of such quantities. In this paper tests against 
downward trend will be discussed. A test against upward trend can 
then always be made by testing -X1, X, - X against downward 
trend. 

2. THE T-TEST 

Let Xi,, Xi be a permutation of the n distinct numbers 
Xi, - * *, X,. Let T count the number of inequalities Xi,< Xi, where 
k<1. One such inequality will be called a reverse arrangement. If 
Xi, * * *, Xn all have the same continuous distribution, then the prob- 
ability of obtaining a sample with T reverse arrangements is propor- 
tional to the number of permutations of the variables 1, 2, n * , 
with T reverse arrangements. 

The statistic T was first proposed by M. G. Kendall3 for testihlg in- 
dependence in a bivariate distribution. Kendall also derived the recur- 
sion formula (1), tabulated the distribution of T for T_ 10, and proved 
that the limit distribution of T is normal. Table 1, however, seems more 
convenient to use for our purpose. The proof of the normality of the 
limit distribution of T given in the present paper seems simpler than 
Kendall's and the method employed may be of general interest. 

We now propose the following test against a downward trend: We 
determine T so that P(T < T I H1) = a, where H1 is the hypothesis of 
randomness and a the size of the critical region. If in our sample we 
obtain a value T < T we shall proceed as if the sample came from a 

2 Henry Scheff6, "On a Measure Problem Arising in the Theory of Non- 
Parametric Tests," Annals of Mathematical Statistics, Vol. 14, September, 1943, 
pp. 227-233. 

3 M. G. Kendall, "A New Measure of Rank Correlation," Biometrika, Vol. 30, 
June, 1938, pp. 81-93. 
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248 HENRY B. MANN 

downward trend. If T> T we shall proceed as if H1 were true. It will 
be shown that under a mild additional restriction on the sequence 
fix f2 , * X fn in the alternative H2 the T-test is a consistent test against 
trend. 

3. THE DISTRIBUTION OF T 

Let Pn(T) be the number of permutations of 1, 2, , n with T 
reverse arrangements. Consider first the permutations of 2, 3, , n. 
We can obtain each permutation of 1, 2, *, n exactly once by putting 
1 into n different places of all permutations of 2, 3, * , n. In doing 
this we increase the number of reverse arrangements by 0, 1, * , n -1 
according to the position into which 1 is placed. Hence 

(1) Pn(T) = Pn_l(T) + Pn-l(T - 1) + * + Pn-l(T - n + 1), 

if Pr,(T) = O for T<O. 
Formula (1) permits tabulation of Pn(T) for small values of n. In 

Table 1 are given the cumulative probabilities of obtaining a permuta- 
tion with T or fewer reverse arrangements, when every permutation 
occurs with probability 1/n! 

Since, under the hypothesis of randomness, P(Xi > Xk) = 1/2, we 
have E( T) = n (n-1)/4. 

To obtain higher moments of T we multiply (1) by [T - n(n -1) /4] 
= Xni. Denoting by En [f(X) ] the expectation of f(Xn) in permutations 
of n variables, we obtain 

En(X') = En1 - )] 

(2) + E ;X n 3)i + 

+ -1 + n + ] 

Since the distribution of X is symmetric, En(X2i+1) 0, (i 0, 1, * 

From (2) we obtain 

(3) En(X2i) = En_l(X2i) + ( Bn (2)En (X2-2) + n.. + B 

where 
k=-ln - 2j 

(4) n + ( )k 

We now put nBn(2j) =f (2j)(n) and f(2i)(1) =f(21)(0) =0; then f(2i)(n) 
satisfies for n=O, 1, * * , the difference equation 
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NONPARAMETRIC TESTS AGAINST TREND 249 

(5) f(2j)(n + 2) -f(2i)(n) = 2 +1) 

with the initial conditionf(2j) (1) =f(21) (0) = 0. For j -1 a solution of (5) 
is (n3-n)/12. Hence we have B.(2)=(n2-1)/12. For j=2 we obtain 
Bn(4) = (3n4 - lOn2+7)/240. Hence for i= 1, (3) becomes 

n2 1 
En(X2) = EI1(X2) + 12 

From this we obtain 
2n3 + 3n2 - 5n 

(6) En(X2) = q^2(T) = 72 

In a similar manner we obtain 

lOOn6 + 228n5 - 455n4- 870n3 + 625n2 + 372n 

(7) En(X4) = 4:3,200 

Formula (6) can also be obtained in a different manner. Let, for 
i <j, 

- 1 -if Xi < Xi, 
(8) {Yi i 

if X<> Xi. 

Then if the continuous function f is the distribution function of Xi 
for i=1, 2, * * ,we have 

E(yi,) = X, o2(y,i) = 

E(yiqjyk) = P(X, < Xi <X*) = i 

o(YystYik) = - 12i 

Similarly we obtain c(yi,yik) = =-Ykj)=1/12, while u(yjiyk) -0 if i, j, 
k, I are distinct. For these results (5) can easily be obtained. 

We proceed to prove that the limit distribution of T is normal. From 
(5) and the initial conditions of (5) it follows that Bn (2j) is given by a 
polynomial in n of degree 2j. To see this we first determine a polyno- 
mial f(2j)(n) of degree 2j+1 satisfying (5) and the initial condition 
f(2j) (0) = 0. It may then be shown by induction thatf(21)(n) = _f(2;)(-n) 
for all even n. But this is only possible if f(2j) (n) = -f(2;) (- n) for all n. 
From (5) it follows that f(2i) (1) =f(2i) (-1). Hence we must also have 
f2i(1)=0. Thus there exists a polynomial of degree 2j+1 satisfying (5) 
and its initial conditions. We proceed to show by induction that En(X2i) 
is given by a polynomial in n of degree 3i and first coefficient 
[(2i-1)(2i-3) * 3.11/36i. 
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250 HENRY B. MANN 

From (3) we have 

ES(X2i) -ER l(X2) = (2)( 1 (X-2) 

(9) 
+ ( )Bn(4E1_(x2-4) +... + Bn(20. 

From the hypothesis of the induction it follows that the jth term on 
the right-hand side of (9) is of degree 3i-j in n. Hence only the first 
term is of degree 3i -1. Since the first difference of E.(X2i) is a poly- 
nomial of degree 3i-1 it follows that E3(x2V) is a polynomial of de- 
gree 3i. Hence we may put E,,(X2i) = aon3+ * . .. Using again the 
hypothesis of our induction we obtain on comparing coefficients in (9) 

(2i - 3) ... 3*1 2i(2i - 1) (2i - 1) ... 3.1 
(10) 3iao = X ao= 

36i-112 2 36' 

From (10) and (6) we have 

E,j(X2i) 
lim = (2i-1) ...*3*1. E.i(X') 

It follows by a well-known theorem that X/?,,(X) is in the limit nor- 
mally distributed with variance 1. From Table 1 it may be seen that the 
approach to normality is remarkably rapid. 

4. CONDITIONS FOR CONSISTENCY AND UNBIASEDNESS OF THE T-TEST 

Let us assume now that some alternative situation (not necessarily 
a trend) is true. Let, for i <ik, P(Xi <Xk) = I + ek. Let further yii be 
defined by (8) and let .'.<k CO -Xn(n -)/2. Then 

T= a, 
, ,<lc 

E(T) 
= n(n-1) + n(n-1 ) 

4 ; ;<.c 4 

Moreover we shall assume that Xi is independent of Xi for iOj so 
that cr(y,yjka) = 0 if i, j, k, I are distinct. We proceed to compute ?2(T) 
under the alternative hypothesis. To simplify the notation the symbol 

, without further specification will denote summation over all values 
for which the summands have been defined, We have 

(11) c2(T) = E[(T - E(T))2] = ,a2(y; ) + 2 E 7(yijy1t) 
+ E Cr(ykj Yl) + E 0(Yi;)- 
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NONPARAMETRIC TESTS AGAINST TREND 251 

We have 

(12) o2(y k) = 4 - ,k2 o(Yi,y,k) ? 0- 

The second of these two statements can be proved as follows: Let 
fi, f2, fs be three continuous functions, then: 

[ df2(X2) f df3(X3) df2(X2) 

< ,J df2(X2) df2(X2) fi df3(X3) 
-oo Xl-o 

? f,~1 df2(X2)[ J df2(X2) f df3(X3)]. 

Adding 

f df2(X2) J df2(X2) df3(X13) 
00 co -0 

to both sides of this inequality we obtain 

rxi r2 xil r+0 Xi 
XJ df2(X2) f_ df3(X3) _ J i df(X2) df2(X2) df3(X3). 
00 00 00 00 -00 

Integrating both sides with respect to X1 we obtain 
f+00 xi 2 

df1(XI) J df2(X2) J df3(X3) 
-00 -00 -_X 

< [f_ dfi(X1) f df2(X2)] [fr f Xi df3(X3)] 

or P(X1>X2>X3) !P(X1>X2)P(X2>X3). From this result the in- 
equality in (12) follows easily. 

We further have 

r(Yikyil) = P(yik = Yi = 1) - E(yik)E(yjj) 
= (Yk = yil = 1) - (2 + esk)(I + eil), 

+00 

P(Yi= = 1) = J (1 - fk)(l - fl)df i + mmn (fik, ei). 
oo 

Hence 

(13) Oa(Yikyil) < + min (eik, eil) - (I + esk)(I + eil) ? I - eikfil. 

Similarly 

(14) (YkkjYl, ? 4 - l 
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252 HENRY B. MANN 

From (11), (12), (13), and (14) we obtain 

o2(T) ? n(n-1) + n(n-1)(n-2) 
4 +6 

l Eik + E2 skEfil + 2 Ekisf j. 

il1 k koj koj 

We put +s1 eik =L*, Li. 1 Eik =L.k; then 

( f ik2 + Fj Eikfii + E2 kifji) 
; k k,j k,j 

- E L,.2 + E L.,2 E : x:j22 
i j *ii 

Since fij2 < 4we obtain 

(15) o2(T) < 3n(n-1) n(n-1)(n-2) 
8 6 

If all eii have the same sign then L, 2 > 
.Fa 

.2 and 2,L. 

2n2n2(n-1)/4. We can then improve (15) to the form 

(15') (T) n(n - 1) n(n - 1)(n - 2) 2 n2(n -1) (T) 4 + 6n 

If the critical region is given by T < T then the power of the T test with 
respect to the hypothesis H is given by P(T < T| H). 

If the size of the critical region is fixed then T=n(n-1)/4 
-tn v'(2n3+3n -5n)/72, where limn_ tn = t and f'ez'I2dx equals the 
size of the critical region. 

Consider now the case that Xn < 0 and n(n -1) (1 + 2Xn)/4 <T+ 1 then 
by Tchebycheff's theorem we have 

(16) P(T < T| H) _! 1- nn 

[T + 1 -(1 + 2Xn )2] 

We may also use 

P(T g T IH) 

(16') ? 1 - + 2(T) 

( n n(n- 1+ V2n31 + 3n 2 
- 

n 
5)2 
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for 

n(n 1) 2n + 3n2 - 5n 

2 72 

For large values of n we may replace tn by t. From (15), (16'), and 
the fact that limn--. tn=t, it can be seen that the T-test is consistent 
whenever limn_. -\/~xn = - 

In case the alternative H is a downward trend, we have fi(X) 
<fj(X) if i < j and 

P(Xi < Xi) =f(1 -f)dfi < (1 -fi)dfi = -; 

hence ei is always negative and (15') may be used as an upper bound of 
a2(T) in (16) or (16'). 

Another estimate of P(T <_ T), which for small values of n gives bet- 
ter results than (16), can be obtained as follows: 

If X is always positive and E(X) =A, then 
00 

\ 1 co A 
P(X > B) = df(X) _ Xdf(X) < -, 

B+e B +Be B? 

f dg = lim f dg, e > 0, 
B+ e f a+O B+e 

where B' is the lower bound of all values B" for which fWB+idf(X) >0. 
Thus 

A B'-A 
P (X _ B) 2! 1-B= B' 

B' B' 

Hence 

n(n - 1) 
(1 + 2Xn) 

4 
(17) P(T < TJ H) > T+ 

We may also use 

-2Xnn(n - 1) -4tncr0 (17') P(T < T) _ 
n(n - 1) - 4tngo 

where ao=-V(2n3+3n2_5n)/72, and may for large n replace tn by t. 
Thus, for instance, for n = 20, Xn = 0.25, t20 = 1.64, (17') yields P(T < T) 
? 0.326. A much better result is obtained from (16') if the distribution 
of T under the alternative H is approximately normal as is probably 
the case under a wide class of alternatives. 
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254 HENRY B. MANN 

If the size of the critical region, that is to say, 1 -P [(X1, . . ., X") 
CWI H1] = a, then the test is unbiased with respect to H2 if 
P(T T T| B) > a for every B in H2. This is, according to (17), the case if 

T + 1 n(n 1) + n n(n- 1)) 

-T+ a 2c 

or 

(18) > 1 (1- a)2(T + 1) 

2 n (n -1) 

For instance, if n = 5, a = 5/120, then T+ 1=2, and we obtain from 
(18), -Xn> 0.31. If n is large enough to use the normal approximation 
for determining the size of the critical region we obtain with 

2 
a0 = x/(2n3+3n2- 5n)/72 

a (1 - a)t2ao 
(18') 2 n(n - 1) 

Thus, for example, if n = 10, a = 0.05, then t = 1.64, and we find from 
(18') that the T-test is certainly unbiased if -Xn>?0.218 [the value 
obtained from (18) is 0.205]. For n=20, a-0.05, t=1.64, we obtain 
from (18'), -X20>0.154, which seems satisfactory. 

Summary of Section 4: The T-test is consistent with respect to any 
sequence of random variables Xi, , X. for which 

1. P(Xi>X2)- =+ ii, for i<j; 
2. P(Xi>XiI X >XI) =P(Xi>Xi), if i, j, k, 1 are distinct; 
3. IiMn,oo (-\n Ieii/n 2)-- 
The T-test is unbiased with respect to any set of random variables 

Xl, - * *, X", if X,, = 2EEi/n(n -1) satisfies the inequality (18), which 
for large n may be replaced by (18'). Lower bounds for the power of 
the T-test are given by (16), (16') and (17), (17') where the primed in- 
equalities are convenient. for larger values of n. 

5. ALTERNATIVES WITH RESPECT TO WHICH THE T-TEST 

IS MOST POWERFUL 

Let Zk = i if exactly i-1 of the X's are larger than Xk. Let 
T(ij ... * in) be the number of nonreverse arrangements in the per- 
mutation i1, * * * , in. T(i1, * * * , in) is equal to the number of reverse 
arrangements in the sequence of the X's. Further let us restrict our- 
selves to tests based on ranks. 

Whenever an alternative B is such that T(ii, * * , in) ? T(j1, i n ) , jn) 
implies P(z =ii, - - * , zn =i0) <P(z1 =j, * .. ., Zn= j=n) then the T-test 
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NONPARAMETRIC TESTS AGAINST TREND 255 

will be most powerful with respect to the alternative B among all tests 
based on ranks. 

We shall as a special case consider a particular alternative B, defined 
as follows: The probability that, among the set Xi, Xi+1, * , Xn, 
Xi will be the first, second, * in magnitude, is, if B is true, given by 
ai, aip, ... , aip,-i-1 (p<l), ai=l/(l+p+ * +pn-i-l) independ- 
ently of the ranks of the first i-1 variables. 

Thus, if B is true, 

-0 if one k, 
P(zi = ki Zi = jl, . , Zi_l = Ji-1) - lap< Lio r 

taik-l-lotherwise, 

where 1i is the number of ja's which are <k. 
Then 

P(zi = ii, z2 = i2, , Zn = in) = alpil 'a2p'2 12 1 . . . anpn-ln-1 

(19) = (Ii a,) pn(n-l)I2p-i;ls = (i ai)pr( ..) 

Hence P(zl=il, , zn=iQ)<P(z1=ji, , zn=jin) whenever 
Ml ... in) > T(jll i * *n). Thus the T-test has maximum power 

with respect to the alternative B. It is, however, not known whether B 
can result if the X's are independently distributed. 

As a side result we obtain from (19) the characteristic function of T. 
We have 

i-n 

Illai R [(1 + p) *.**.( + p + ...+ p n-1)]-1 

i=1 

(p - l)n 

(p - 1)(p2 - 1) 
... 

(pn -1 

Summing (19) over all permutations, we obtain 

1 EPp(T)pT (p )(pn 1)... (p1) 

n! ~~~~(p - ) n 

This is an identity in p. Hence fT(), the characteristic function of T, 
is given by 

1 (eino-1) ... (ei?-1) 
fT(8= E-Pn(T)eiTG = 

n! (ei8 - 1)n 

6. THE K-TEST 

If P(Xi>Xi) increases rapidly with j-i, then another test is more 
powerful than the T-test. This test is carried out as follows: 
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256 HENRY B. MANN 

Determine for the sample XO, X1, * * *, X.-1 the smallest value of K 
for which the following set of inequalities is fulfilled: 

Xo > Xk, Xo > Xk+l?, , * * Xo > Xn-1 

(20) XI > Xk+l) .. * * Xl > Xn-1, 

Xn-k-1 > Xn-1 

Determine K so that P(K ? Kj H1) is equal to the size of the critical 
region. If K <?K, proceed as if H2 were true; if K> K, proceed as if Hi 
were true. 

Let Xo, X1, .., Xn-, be the sample in the order taken. Consider the 
n! points (YO, Y1, * * *, Y.-,) where Yo = Xi,,, Yn-i - Xi., for 
every permutation io0 * * *, in-1 of the numbers 0, 1, * * *, n-1. Let 
Qn(K) be the number of points (YO, * * *, Y,-,) that satisfy the IKth 
set of inequalities. We arrange every point in order of decreasing mag- 
nitude so that to every point YO, Y1, * , Yn-, we have a sequence 
of inequalities Yi0> ... > Yi.,. Thus every point is mapped into a 
permutation io, * * * , in-,. In order that the point with the permutation 
io) ... **X i_n fulfill the Kth set of inequalities, it is necessary and suffi- 
cient that in the permutation io, ii * , in-, no number a be preceded 
by any of the numbers a+:K, a+cK+K , * *, n-1. Hence the number 
of points fulfilling the Kth set of inequalities is equal to the number 
of permutations in which no number a is preceded by any of the num- 
bers a+K, a+K+1, ... , n-1. 

We have Qn(1) = 1. A permutation in which no a is preceded by any 
number larger than a+1 can have the number 0 only at the first or 
the second place. Hence such a permutation must either be of the 
type 0, il, * * * , in-1, or of the type 1, 0, i2, . . .* in-1; and ii, * * *, in-,; 

i2, * * * X in-I respectively must fulfill the Tth set of inequalities with 
K =-2. Hence we have the recursion 

(21) Qn(2) = Qn_1(2) + Qn_2(2). 

In using this relation we must put Qn(K) = 0 for n <0, Qn(n+j) = n! for 
j _0, n >0. To obtain a similar recursion for K -3 we observe that a 
permutation in which a is never preceded by any number larger than 
a+2 can be only of one of the following types: 

0, ii, .. * in-,; 1 y 0) i2) 
.. * in-,; 2, O, 1, i3 ** in_1; 

2, O, 3) 1 i4) .. * in-,; 1) 2, O, i3) .. * in-1; 2, 1, O, i3y 
.. * in-1- 

Hence we have the recursion 

(22) Qn(3) = Qn_1(3) + Qn-2(3) + 3Qn-3(3) + Qn.4(3). 
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Let Pn(K) be the probability of obtaining a permutation satisfying 
the Kth set of inequalities. For n<2 ?2some of the variables are not 
involved in the inequalities (20). We therefore have4 

(23) P.(n - K) = P2K(K) for n > 2K. 

We shall show below that P8(4) = 0.0284, Ps(4) = 0.0086, P10(5) 
=0.0098. These values and the relations (21), (22), and (23) permit 
tabulation of Pn(K) for n < 9. From (23) and Table 2 we further obtain: 

Pn(n - 5) = Plo(5) = 0.0098 ... for n > 10; 

P"(n - 4) = P8(4) = 0.0284 ... for n > 8; 

(24) P"(n - 3) = P6(3) = 0.0792 ... for n ? 6; 

P"(n-2) = 0.2083 ... for n 2 4; 

P.(n-1) = 0.5 for n _ 2. 

It is clear that (24) contains for n> 10 all critical regions possible for 
the K-test between size 0.0098 and 0.5. Regions smaller than 0.0098 
are not likely to occur in practical problems. Hence within a range 
which is of interest to the practical statistician we shall have all regions 
available for the K-test if we compute P8(4), P9(4), and Plo(5). It is a 
disadvantage of the K-test that we are rather limited in the choice of 
the size of the critical region, 

We shall derive the following two relations: Let Rn(K) be the subset 
of the n-dimensional Euclidean space given by (20) and let f be the 
common cumulative distribution function of the Xi; then for n> 2K, 
as we shall prove below, 

(25) P. (n -K) = P2K(K) = f (K) df(Xo) ... df(X2K-1) 

= U{j + l) [max (ji, j2) + 2] ... [max (jl,* , jK) + K}1 

where E denotes summation over all permutations ji, * * , IK of 
1, * *, K. Further let miax (ij, , i) =min [max(ii, i * *, il), K-i]; 
then 

P9(4) = 4 df(XO) . . df(X8) 

>2'{ [max (ji) + 1[ [max (j1, j2) + 21 

* * * [max (j1, ... j5) + 51 V, 
4 For typographical reasons it was not possible to use k in subscripts and 

exponents. Every K in subscripts and exponents in this section should be read 
as k. 
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where ' denotes summation over all permutations ji, , j5 of 
1, , 5 for which 1 precedes 5. 

Since the integral in (25) is independent of f, we may assume that f 
is a rectangular distribution between 0 and 1. We consider the integral, 
in (25). For XO, Xi, * * *, XK1 fixed, XK varies from 0 to Xo; XK+1 

from 0 to min (XO, XI); XK+2 from 0 to min (XO, Xi, X2); and so forth; 
hence we obtain 

P2K(K) = ... fxo min (Xo, X) 

... min (XO, X1} ,* XK-I)dXo *.. dXK_1 

We split this integral into the I! parts Xi, <X,2 < * <XiK; then for 
any permutation ii, * , ix of 0, .., K -1 we have to compute 

r l r tXI i2 

(27) LodXiJ dXi*r_l J dXilXo min (Xo, Xi) 

* min (XO, X, -1) 

Consider the exponent of Xi. in (27). In the factors under the integral 
sign Xi. occurs for the first time in min (XO, X1, , Xi.). From then 
on it occurs in every factor. If ip < i. for < a, then none of the factors in 
(27) will be equal to Xi.. If min (ii, * * * X i j)>ia (a>1), then the 
factors min (XO, * . , Xi.), min (XO, * , Xi,+,), * * , min (XO, * 

Xi,,,) will be equal to Xi.. In both cases the exponent of Xi. may be 
written as min (ij, * *, i)-min (i, * , ia) For a= 1, we shall 
have min (XO, * * *, Xi) ... min (XO, * * *, XK-1) equal to Xi,. 
Hence (27) becomes 

JdX* XX. min (i;1 
- 

*@i-1)-min (il, * 
- 

.;K) 

(28) jidx Xi2 

... *J dX;2X ;2 ii-min (ij,i2) r dX;iX;tK-ii. 

Integrating out the last integral we obtain under the next to the last 
integral sign 

1 
1 K-im+iX. i-min (ii,i2) = (K-il + J)-lX2 K-min (ii,i2)+i 

+ 1 
X2 12 

When this process is continued (28) finally becomes 

(29) ( -il + 1)-[ - min (i1, i2) + 2]-1 

* * * [K-min (i, ... * iK) +K . 
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Putting K-ia=ja and summing over all permutations i,, iK, 
we obtain (25). 

In the integral in (26) we have Xs varying from 0 to min (XO, XI); X6 
from 0 to min (XO, XI, X2); and so forth, hence 

(30) (4) o... 10 min (XO, XI) 
... min (XO, Xl, , X4)dX4 ... dXo. 

Now for every subset Xi, < * <Xi, where ii, , i is a permuta- 
tion of the numbers 0, 1, 2, 3, 4,- we obtain 

Jlf Xi *J i min (XO, X) ... min (XO, * , X4)dXil ... dXis 

I rXi, it; 
= J . . . [iii -mai (;,l)x2max (i1j)-mac [min (i,i2),1i 

...X max Im in (it, i2, 4, W, I I-MaX Im iu (ii2, i3, i4,4), 

dXl *... dXj5, 

from which (26) follows by an obvious extension of the argument used 
in the proof of (25). 

By the use of (25) and (26) the values P8(4), Plo(5), and P9(4) have 
been computed. It may be remarked that the labor involved was not 
at all excessive since in carrying out the computations a great many 
short cuts offer themselves freely. 

It is easy to construct trends for which the K-test has maximum 
power at some fixed level of significance, Let the critical value of K 
be K and consider alternatives where P(Xi > XK+i+) =1 for j > 0. It is 
easy to find trends for which this is true. The K-test has then clearly 
the power 1 with respect to such trends. The power of the K-test is 
also high with respect to trends for which P(X,>Xi+K+i) is close to 1 
for j_ 0. Such alternatives do quite frequently occur in practical work. 
The fact that the K-test is most powerful with respect to a fairly wide 
class of alternatives seems worth noting. It is -very often said that in 
using a test based on ranks, one is "throwing away information." In 
using the K-test an even larger "amount of information" is "thrown 
away," nevertheless it is a most powerful test with respect to a sub- 
stantial class of alternatives. 

The Ohio State University 
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